Aarhat Multidisciplinary International Education Research Journal (AMIERJ)
ISSN 2278-5655
Impact Factor : 0.948

Bi-Monthly

Vol - II Issues - V [2013-14]

Chief Editor:
Ubale Amol Baban

Editorial/Head Office: 108, Gokuldham Society, Dr.Ambedkar chowk, Near TV Towar,Badlapur, MS
INEQUALITIES ON NUMBER THEORETIC FUNCTIONS

Dr. Sanjeev Kumar Mishra
M.Sc B.Ed Ph.D (Maths)

And

Dr. A.S. Uniyal

Abstract
We have observed the inequalities on number theoretic functions and one can easily find out the maximum and minimum fluctuations in a defined range.

1. Introduction:
The theory of numbers in that branch of Mathematics which deals with properties of whole number, 1, 2, 3, 4, 5, 6,………………….. also called the counting numbers, or positive integers. The positive integers are undoubtedly man’s first mathematical creation. It is hardly possible to imagine human beings without the ability to count, at least within a limited range. Historical record shows that’s early as 5700 B.C., the ancient Sumerians kept a Calendar, so they must have developed some from arithmetic.

When ancient civilizations reached a level which provided leisure time to ponder about things, some people begin to speculate about the nature and properties of numbers. This curiosity developed in to a sort of number mysticism or numerology, and even today numbers such as 3, 7, 11, and 13 are considered omens of good or bad luck.

The professional mathematician is attracted to number theory because the way all the weapons of modern mathematics can brought to bear on its problems. As a matter of fact, many important branches of mathematics had their origin in number theory. New problem arise more rapidly and many of the old problems have remained unsolved for centuries.

2. Formulations:
\[\Delta d(x) = d(x) - d(x + 1), \quad x \geq 1 \]
\[\Delta \mu(x) = \mu(x) - \mu(x+1), \quad x \geq 1 \]
\[\Delta \varphi(x) = \varphi(x) - \varphi(x+1), \quad x \geq 1 \]

Where \(d(x) \) denotes divisor function:
Where \(\mu(x) \) denotes mobius function:
Where \(\varphi(x) \) denotes Euler's totient function:
\[\Delta \sigma(x) = \sigma(x) - \sigma(x+1), \quad x \geq 1 \]

.............2.4

Where \(\sigma(x) \) denotes sum of the divisors of \(x \):

3. Experiment:

For the numbers 1 to 100 a table has been formulated for (2.1) and following results have been obtained:

4. Theorem: With the help of table 4 (c)

If \(\Delta d = k \) then

\[\prod_{i=1}^{p} (\alpha_i + 1) = \prod_{j=1}^{m} (\beta_j + 1) + k \]

Where \(x = \prod_{i=1}^{p} p_i^{\alpha_i} \) and \(x + 1 = \prod_{j=1}^{m} q_j^{\beta_j} \)

In particular

If \(K = 0 \) then \(\Delta d = 0 \)

\(\Rightarrow x, x+1 \) have similar factorization

Proof can be easily seen with the help of table 4(c)

5. Experiment: For the numbers 1 to 100 a table has been formulated for (2.2) and following results have been obtained:

Theorem 5.1:

<table>
<thead>
<tr>
<th>Value</th>
<th>Behaviour for (x, x+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_i = 1 \forall i)
(K = \text{odd})</td>
<td>(\beta_j = 1 \forall j)
(I = \text{even})</td>
</tr>
<tr>
<td>(\alpha_i = 1 \forall i)
(K = \text{odd})</td>
<td>For at least one value of (j, \beta_j > 1)</td>
</tr>
<tr>
<td>(\alpha_i > 1)
(K = \text{odd})</td>
<td>(\beta_j = 1 \forall j)
(I = \text{even})</td>
</tr>
</tbody>
</table>
\[\mu(x) = \begin{cases}
0 & \text{For at least one value of } i, \alpha_i > 1 \quad \text{For at least one value of } j, \beta_j > 1 \\
\alpha_i = 1 \forall i & \beta_j = 1 \forall j \\
K = \text{odd} & l = \text{odd}
\end{cases} \]

\[\begin{array}{c|c|c}
\beta_j = 1 \forall j & \text{For at least one value of } j, \beta_j > 1 \\
l = \text{even} & \alpha_i = 1 \forall i \\
K = \text{odd} &
\end{array} \]

\[\begin{array}{c|c|c}
2 & \beta_j = 1 \forall j & \text{For at least one value of } j, \beta_j > 1 \\
l = \text{even} & \alpha_i = 1 \forall i & K = \text{odd}
\end{array} \]

Proof can be easily seen with the help of table 4(d).

6. **Experiment:** For the number 1 to 100 a table has been formulated for 2.3 and following results have been obtained.

<table>
<thead>
<tr>
<th>Group Size</th>
<th>Maximum fluctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>118</td>
</tr>
<tr>
<td>4</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>122</td>
</tr>
<tr>
<td>20</td>
<td>126</td>
</tr>
<tr>
<td>25</td>
<td>132</td>
</tr>
<tr>
<td>50</td>
<td>132</td>
</tr>
<tr>
<td>100</td>
<td>132</td>
</tr>
</tbody>
</table>

Table 4(a)

Theorem 7.0 If \(\varphi \) denotes Euler's function then \(\Delta \varphi \) is increasing the interval.

Proof can be easily seen with the help of table 4(a) and 4(f).

7.1 **Experiment:** With the help of table 4(h) for \(x \) (1 to 200) by taking the group size as divisor of \(x \) (e.g. 200) 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200 following observations have been made:
<table>
<thead>
<tr>
<th>Group Size</th>
<th>Maximum fluctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>364</td>
</tr>
<tr>
<td>2</td>
<td>730</td>
</tr>
<tr>
<td>4</td>
<td>730</td>
</tr>
<tr>
<td>5</td>
<td>730</td>
</tr>
<tr>
<td>8</td>
<td>730</td>
</tr>
<tr>
<td>10</td>
<td>730</td>
</tr>
<tr>
<td>20</td>
<td>730</td>
</tr>
<tr>
<td>25</td>
<td>730</td>
</tr>
<tr>
<td>40</td>
<td>730</td>
</tr>
<tr>
<td>50</td>
<td>730</td>
</tr>
<tr>
<td>100</td>
<td>730</td>
</tr>
<tr>
<td>200</td>
<td>730</td>
</tr>
</tbody>
</table>

Table 4(b)

Theorem 8.0 If σ denotes sum of the divisors then $\Delta \sigma$ have maximum fluctuation at group size one and remains constant in other intervals.

Proof can be easily seen with the help of tables 4(b), 4(g) and 4(h).

\[
d(x) = \sum \frac{1}{d(x)}
\]

<table>
<thead>
<tr>
<th>X</th>
<th>d(x)</th>
<th>Δ d(x)</th>
<th>x</th>
<th>d(x)</th>
<th>Δ d(x)</th>
<th>X</th>
<th>d(x)</th>
<th>Δ d(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>36</td>
<td>9</td>
<td>7</td>
<td>71</td>
<td>2</td>
<td>-9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>37</td>
<td>2</td>
<td>-2</td>
<td>72</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>38</td>
<td>4</td>
<td>2</td>
<td>73</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>39</td>
<td>2</td>
<td>-6</td>
<td>74</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>-2</td>
<td>40</td>
<td>8</td>
<td>6</td>
<td>75</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>41</td>
<td>2</td>
<td>-6</td>
<td>76</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-2</td>
<td>42</td>
<td>8</td>
<td>6</td>
<td>77</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>43</td>
<td>2</td>
<td>-4</td>
<td>78</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>-1</td>
<td>44</td>
<td>6</td>
<td>0</td>
<td>79</td>
<td>2</td>
<td>-7</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>45</td>
<td>6</td>
<td>2</td>
<td>80</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>-4</td>
<td>46</td>
<td>4</td>
<td>2</td>
<td>81</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>4</td>
<td>47</td>
<td>2</td>
<td>-7</td>
<td>82</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>μ(x)</td>
<td>Δ μ(x)</td>
<td>x</td>
<td>μ(x)</td>
<td>Δ μ(x)</td>
<td>x</td>
<td>μ(x)</td>
<td>Δ μ(x)</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>34</td>
<td>1</td>
<td>-1</td>
<td>67</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>69</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>37</td>
<td>-1</td>
<td>-2</td>
<td>70</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>71</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>39</td>
<td>1</td>
<td>1</td>
<td>72</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>40</td>
<td>0</td>
<td>1</td>
<td>73</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>-1</td>
<td>0</td>
<td>74</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-1</td>
<td>42</td>
<td>-1</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>43</td>
<td>-1</td>
<td>-1</td>
<td>76</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>11</td>
<td>-1</td>
<td>-1</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>77</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>45</td>
<td>0</td>
<td>-1</td>
<td>78</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
<td>-2</td>
<td>46</td>
<td>1</td>
<td>2</td>
<td>79</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 4(c)
<table>
<thead>
<tr>
<th>X</th>
<th>φ(x)</th>
<th>Δ φ(x)</th>
<th>x</th>
<th>φ(x)</th>
<th>Δ φ(x)</th>
<th>x</th>
<th>φ(x)</th>
<th>Δ φ(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>35</td>
<td>24</td>
<td>12</td>
<td>69</td>
<td>44</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>36</td>
<td>12</td>
<td>-24</td>
<td>70</td>
<td>24</td>
<td>-46</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>37</td>
<td>36</td>
<td>18</td>
<td>71</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-2</td>
<td>38</td>
<td>18</td>
<td>-6</td>
<td>72</td>
<td>24</td>
<td>-36</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>39</td>
<td>24</td>
<td>-12</td>
<td>73</td>
<td>72</td>
<td>-48</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-4</td>
<td>40</td>
<td>16</td>
<td>-24</td>
<td>74</td>
<td>36</td>
<td>-4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>2</td>
<td>41</td>
<td>40</td>
<td>28</td>
<td>75</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>-2</td>
<td>42</td>
<td>12</td>
<td>-30</td>
<td>76</td>
<td>36</td>
<td>-4</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td>43</td>
<td>42</td>
<td>22</td>
<td>77</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>-6</td>
<td>44</td>
<td>20</td>
<td>-4</td>
<td>78</td>
<td>24</td>
<td>-54</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>6</td>
<td>45</td>
<td>24</td>
<td>2</td>
<td>79</td>
<td>78</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>-8</td>
<td>46</td>
<td>22</td>
<td>-24</td>
<td>80</td>
<td>32</td>
<td>-22</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>6</td>
<td>47</td>
<td>46</td>
<td>30</td>
<td>81</td>
<td>54</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>-2</td>
<td>48</td>
<td>16</td>
<td>-26</td>
<td>82</td>
<td>40</td>
<td>-42</td>
</tr>
</tbody>
</table>

Table 4 (d)
<table>
<thead>
<tr>
<th>G.S.</th>
<th>F</th>
<th>G.S.</th>
<th>F</th>
<th>G.S.</th>
<th>F</th>
<th>G.S.</th>
<th>F</th>
<th>G.S.</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>1</td>
<td>58-60</td>
<td>86</td>
<td>28-32</td>
<td>42</td>
<td>50-55</td>
<td>62</td>
<td>0-25</td>
<td>26</td>
</tr>
<tr>
<td>2-4</td>
<td>2</td>
<td>60-62</td>
<td>74</td>
<td>32-36</td>
<td>36</td>
<td>55-60</td>
<td>86</td>
<td>25-50</td>
<td>60</td>
</tr>
<tr>
<td>4-6</td>
<td>6</td>
<td>62-64</td>
<td>20</td>
<td>36-40</td>
<td>42</td>
<td>60-65</td>
<td>74</td>
<td>50-75</td>
<td>94</td>
</tr>
<tr>
<td>6-8</td>
<td>6</td>
<td>64-66</td>
<td>62</td>
<td>40-44</td>
<td>58</td>
<td>65-70</td>
<td>92</td>
<td>75-100</td>
<td>132</td>
</tr>
<tr>
<td>8-10</td>
<td>8</td>
<td>66-68</td>
<td>58</td>
<td>44-48</td>
<td>56</td>
<td>70-75</td>
<td>94</td>
<td>0-50</td>
<td>60</td>
</tr>
<tr>
<td>10-12</td>
<td>14</td>
<td>68-70</td>
<td>66</td>
<td>48-52</td>
<td>50</td>
<td>75-80</td>
<td>100</td>
<td>50-100</td>
<td>132</td>
</tr>
<tr>
<td>12-14</td>
<td>14</td>
<td>70-72</td>
<td>92</td>
<td>52-56</td>
<td>62</td>
<td>80-85</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-16</td>
<td>8</td>
<td>72-74</td>
<td>44</td>
<td>56-60</td>
<td>86</td>
<td>85-90</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-18</td>
<td>22</td>
<td>74-76</td>
<td>8</td>
<td>60-64</td>
<td>74</td>
<td>90-95</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-20</td>
<td>22</td>
<td>76-78</td>
<td>90</td>
<td>64-68</td>
<td>62</td>
<td>95-100</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-22</td>
<td>14</td>
<td>78-80</td>
<td>100</td>
<td>68-72</td>
<td>92</td>
<td>0-10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-24</td>
<td>26</td>
<td>80-82</td>
<td>56</td>
<td>72-76</td>
<td>52</td>
<td>10-20</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-26</td>
<td>24</td>
<td>82-84</td>
<td>100</td>
<td>76-80</td>
<td>100</td>
<td>20-30</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-28</td>
<td>20</td>
<td>84-86</td>
<td>62</td>
<td>80-84</td>
<td>100</td>
<td>30-40</td>
<td>42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4(e)

$\Delta \varphi (x)$
<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>35</td>
<td>48</td>
<td>.43</td>
<td>69</td>
<td>96</td>
<td>-48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-1</td>
<td>36</td>
<td>91</td>
<td>53</td>
<td>70</td>
<td>144</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>37</td>
<td>38</td>
<td>.22</td>
<td>71</td>
<td>72</td>
<td>-123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>38</td>
<td>60</td>
<td>4</td>
<td>72</td>
<td>195</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-6</td>
<td>39</td>
<td>56</td>
<td>.34</td>
<td>73</td>
<td>74</td>
<td>-40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>4</td>
<td>40</td>
<td>90</td>
<td>48</td>
<td>74</td>
<td>114</td>
<td>-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-7</td>
<td>41</td>
<td>42</td>
<td>.54</td>
<td>75</td>
<td>124</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>2</td>
<td>42</td>
<td>96</td>
<td>52</td>
<td>76</td>
<td>140</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>-5</td>
<td>43</td>
<td>44</td>
<td>.40</td>
<td>77</td>
<td>96</td>
<td>-72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>6</td>
<td>44</td>
<td>84</td>
<td>6</td>
<td>78</td>
<td>168</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>-16</td>
<td>45</td>
<td>78</td>
<td>6</td>
<td>79</td>
<td>80</td>
<td>-106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>14</td>
<td>46</td>
<td>72</td>
<td>24</td>
<td>80</td>
<td>186</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>-10</td>
<td>47</td>
<td>48</td>
<td>.76</td>
<td>81</td>
<td>121</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>0</td>
<td>48</td>
<td>124</td>
<td>67</td>
<td>82</td>
<td>126</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>-7</td>
<td>49</td>
<td>57</td>
<td>.36</td>
<td>83</td>
<td>84</td>
<td>-140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>31</td>
<td>13</td>
<td>50</td>
<td>93</td>
<td>21</td>
<td>84</td>
<td>224</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>-21</td>
<td>51</td>
<td>72</td>
<td>.26</td>
<td>85</td>
<td>108</td>
<td>-24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>39</td>
<td>19</td>
<td>52</td>
<td>98</td>
<td>44</td>
<td>86</td>
<td>132</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>-22</td>
<td>53</td>
<td>54</td>
<td>.66</td>
<td>87</td>
<td>120</td>
<td>-60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>42</td>
<td>10</td>
<td>54</td>
<td>120</td>
<td>48</td>
<td>88</td>
<td>180</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>32</td>
<td>-4</td>
<td>55</td>
<td>72</td>
<td>.48</td>
<td>89</td>
<td>90</td>
<td>-144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>36</td>
<td>12</td>
<td>56</td>
<td>120</td>
<td>40</td>
<td>90</td>
<td>234</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 (f)
<table>
<thead>
<tr>
<th>x</th>
<th>σ(x)</th>
<th>Δσ(x)</th>
<th>x</th>
<th>σ(x)</th>
<th>Δσ(x)</th>
<th>x</th>
<th>σ(x)</th>
<th>Δσ(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>217</td>
<td>15</td>
<td>137</td>
<td>288</td>
<td>148</td>
<td>174</td>
<td>372</td>
<td>02</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>-114</td>
<td>138</td>
<td>140</td>
<td>Δ196</td>
<td>175</td>
<td>270</td>
<td>90</td>
</tr>
<tr>
<td>102</td>
<td>216</td>
<td>112</td>
<td>139</td>
<td>336</td>
<td>144</td>
<td>176</td>
<td>180</td>
<td>-366</td>
</tr>
<tr>
<td>103</td>
<td>104</td>
<td>-106</td>
<td>140</td>
<td>192</td>
<td>-24</td>
<td>177</td>
<td>546</td>
<td>364</td>
</tr>
<tr>
<td>104</td>
<td>210</td>
<td>18</td>
<td>141</td>
<td>216</td>
<td>48</td>
<td>178</td>
<td>182</td>
<td>-154</td>
</tr>
<tr>
<td>105</td>
<td>192</td>
<td>30</td>
<td>142</td>
<td>168</td>
<td>-235</td>
<td>179</td>
<td>336</td>
<td>88</td>
</tr>
<tr>
<td>106</td>
<td>162</td>
<td>54</td>
<td>143</td>
<td>403</td>
<td>223</td>
<td>180</td>
<td>248</td>
<td>-112</td>
</tr>
<tr>
<td>107</td>
<td>108</td>
<td>-172</td>
<td>144</td>
<td>180</td>
<td>-42</td>
<td>181</td>
<td>360</td>
<td>132</td>
</tr>
<tr>
<td>108</td>
<td>280</td>
<td>170</td>
<td>145</td>
<td>222</td>
<td>-6</td>
<td>182</td>
<td>228</td>
<td>156</td>
</tr>
<tr>
<td>109</td>
<td>110</td>
<td>-106</td>
<td>146</td>
<td>228</td>
<td>-38</td>
<td>183</td>
<td>384</td>
<td>196</td>
</tr>
<tr>
<td>110</td>
<td>216</td>
<td>64</td>
<td>147</td>
<td>266</td>
<td>-116</td>
<td>184</td>
<td>188</td>
<td>-148</td>
</tr>
<tr>
<td>111</td>
<td>152</td>
<td>-96</td>
<td>148</td>
<td>150</td>
<td>-222</td>
<td>185</td>
<td>336</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>248</td>
<td>134</td>
<td>149</td>
<td>372</td>
<td>220</td>
<td>186</td>
<td>320</td>
<td>-40</td>
</tr>
<tr>
<td>113</td>
<td>114</td>
<td>-126</td>
<td>150</td>
<td>152</td>
<td>-148</td>
<td>187</td>
<td>360</td>
<td>168</td>
</tr>
<tr>
<td>114</td>
<td>240</td>
<td>96</td>
<td>151</td>
<td>300</td>
<td>66</td>
<td>188</td>
<td>192</td>
<td>-316</td>
</tr>
<tr>
<td>115</td>
<td>144</td>
<td>-66</td>
<td>152</td>
<td>234</td>
<td>-54</td>
<td>189</td>
<td>508</td>
<td>314</td>
</tr>
<tr>
<td>116</td>
<td>210</td>
<td>28</td>
<td>153</td>
<td>288</td>
<td>96</td>
<td>190</td>
<td>194</td>
<td>-100</td>
</tr>
<tr>
<td>117</td>
<td>182</td>
<td>2</td>
<td>154</td>
<td>192</td>
<td>-200</td>
<td>191</td>
<td>294</td>
<td>-42</td>
</tr>
<tr>
<td>118</td>
<td>180</td>
<td>36</td>
<td>155</td>
<td>392</td>
<td>234</td>
<td>192</td>
<td>336</td>
<td>-63</td>
</tr>
<tr>
<td>119</td>
<td>144</td>
<td>-216</td>
<td>156</td>
<td>158</td>
<td>-82</td>
<td>193</td>
<td>399</td>
<td>201</td>
</tr>
<tr>
<td>120</td>
<td>360</td>
<td>227</td>
<td>157</td>
<td>240</td>
<td>24</td>
<td>194</td>
<td>198</td>
<td>-270</td>
</tr>
<tr>
<td>121</td>
<td>133</td>
<td>-53</td>
<td>158</td>
<td>216</td>
<td>-162</td>
<td>195</td>
<td>468</td>
<td>268</td>
</tr>
<tr>
<td>122</td>
<td>186</td>
<td>18</td>
<td>159</td>
<td>378</td>
<td>186</td>
<td>196</td>
<td>200</td>
<td>-265</td>
</tr>
<tr>
<td>123</td>
<td>168</td>
<td>-56</td>
<td>160</td>
<td>192</td>
<td>-171</td>
<td>197</td>
<td>465</td>
<td>193</td>
</tr>
<tr>
<td>124</td>
<td>224</td>
<td>68</td>
<td>161</td>
<td>363</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>312</td>
<td>184</td>
<td>162</td>
<td>294</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.S</td>
<td>F</td>
<td>G.S.</td>
<td>F</td>
<td>G.S.</td>
<td>F</td>
<td>G.S.</td>
<td>F</td>
<td>G.S.</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>0-2</td>
<td>1</td>
<td>68-70</td>
<td>120</td>
<td>134-136</td>
<td>168</td>
<td>0-4</td>
<td>4</td>
<td>132-136</td>
</tr>
<tr>
<td>2-4</td>
<td>4</td>
<td>70-72</td>
<td>244</td>
<td>136-138</td>
<td>298</td>
<td>4-8</td>
<td>11</td>
<td>136-140</td>
</tr>
<tr>
<td>4-6</td>
<td>10</td>
<td>72-74</td>
<td>161</td>
<td>138-140</td>
<td>344</td>
<td>8-12</td>
<td>30</td>
<td>140-144</td>
</tr>
<tr>
<td>6-8</td>
<td>11</td>
<td>74-76</td>
<td>60</td>
<td>140-142</td>
<td>168</td>
<td>12-16</td>
<td>24</td>
<td>144-148</td>
</tr>
<tr>
<td>8-10</td>
<td>11</td>
<td>76-78</td>
<td>160</td>
<td>142-144</td>
<td>458</td>
<td>16-20</td>
<td>41</td>
<td>148-152</td>
</tr>
<tr>
<td>10-12</td>
<td>30</td>
<td>78-80</td>
<td>194</td>
<td>144-146</td>
<td>265</td>
<td>24-28</td>
<td>45</td>
<td>152-156</td>
</tr>
<tr>
<td>12-14</td>
<td>24</td>
<td>80-82</td>
<td>70</td>
<td>146-148</td>
<td>154</td>
<td>28-32</td>
<td>82</td>
<td>156-160</td>
</tr>
<tr>
<td>14-16</td>
<td>20</td>
<td>82-84</td>
<td>256</td>
<td>148-150</td>
<td>442</td>
<td>36-40</td>
<td>87</td>
<td>164-168</td>
</tr>
<tr>
<td>18-20</td>
<td>41</td>
<td>86-88</td>
<td>150</td>
<td>150-152</td>
<td>368</td>
<td>40-44</td>
<td>106</td>
<td>172-172</td>
</tr>
<tr>
<td>20-22</td>
<td>16</td>
<td>88-90</td>
<td>266</td>
<td>152-154</td>
<td>150</td>
<td>44-48</td>
<td>143</td>
<td>176-180</td>
</tr>
<tr>
<td>22-24</td>
<td>65</td>
<td>90-92</td>
<td>178</td>
<td>154-156</td>
<td>434</td>
<td>52-56</td>
<td>114</td>
<td>180-184</td>
</tr>
<tr>
<td>26-28</td>
<td>42</td>
<td>94-96</td>
<td>286</td>
<td>156-158</td>
<td>316</td>
<td>56-60</td>
<td>214</td>
<td>188-192</td>
</tr>
<tr>
<td>28-30</td>
<td>82</td>
<td>96-98</td>
<td>189</td>
<td>158-160</td>
<td>348</td>
<td>60-64</td>
<td>140</td>
<td>192-196</td>
</tr>
<tr>
<td>30-32</td>
<td>71</td>
<td>98-100</td>
<td>176</td>
<td>160-162</td>
<td>370</td>
<td>64-68</td>
<td>136</td>
<td>196-200</td>
</tr>
<tr>
<td>32-34</td>
<td>21</td>
<td>100-102</td>
<td>226</td>
<td>162-164</td>
<td>329</td>
<td>68-72</td>
<td>244</td>
<td>0-5</td>
</tr>
<tr>
<td>34-36</td>
<td>75</td>
<td>102-104</td>
<td>218</td>
<td>164-166</td>
<td>78</td>
<td>72-76</td>
<td>161</td>
<td>5-10</td>
</tr>
<tr>
<td>36-38</td>
<td>75</td>
<td>106-108</td>
<td>342</td>
<td>166-168</td>
<td>609</td>
<td>80-84</td>
<td>256</td>
<td>15-20</td>
</tr>
<tr>
<td>42-44</td>
<td>92</td>
<td>110-112</td>
<td>230</td>
<td>170-172</td>
<td>182</td>
<td>88-92</td>
<td>266</td>
<td>25-30</td>
</tr>
<tr>
<td>44-46</td>
<td>18</td>
<td>112-114</td>
<td>260</td>
<td>172-174</td>
<td>320</td>
<td>92-96</td>
<td>286</td>
<td>30-35</td>
</tr>
<tr>
<td>46-48</td>
<td>143</td>
<td>114-116</td>
<td>162</td>
<td>174-176</td>
<td>236</td>
<td>96-100</td>
<td>215</td>
<td>35-40</td>
</tr>
<tr>
<td>48-50</td>
<td>103</td>
<td>118-120</td>
<td>443</td>
<td>176-178</td>
<td>468</td>
<td>104-108</td>
<td>342</td>
<td>40-45</td>
</tr>
<tr>
<td>50-52</td>
<td>114</td>
<td>120-122</td>
<td>280</td>
<td>178-180</td>
<td>730</td>
<td>108-112</td>
<td>276</td>
<td>45-50</td>
</tr>
<tr>
<td>54-56</td>
<td>96</td>
<td>122-124</td>
<td>124</td>
<td>180-182</td>
<td>518</td>
<td>112-116</td>
<td>260</td>
<td>50-55</td>
</tr>
</tbody>
</table>

Table 4(g)
<table>
<thead>
<tr>
<th></th>
<th>56-58</th>
<th>50</th>
<th>124-126</th>
<th>182-184</th>
<th>244</th>
<th>116-120</th>
<th>443</th>
<th>55-60</th>
<th>214</th>
<th>24-32</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58-60</td>
<td>214</td>
<td>126-128</td>
<td>311</td>
<td>184-186</td>
<td>264</td>
<td>120-124</td>
<td>283</td>
<td>60-65</td>
<td>166</td>
<td>32-40</td>
</tr>
<tr>
<td></td>
<td>60-62</td>
<td>140</td>
<td>128-130</td>
<td>364</td>
<td>186-188</td>
<td>344</td>
<td>124-128</td>
<td>340</td>
<td>65-70</td>
<td>136</td>
<td>40-48</td>
</tr>
<tr>
<td></td>
<td>62-64</td>
<td>66</td>
<td>130-132</td>
<td>408</td>
<td>188-190</td>
<td>208</td>
<td>128-132</td>
<td>408</td>
<td>70-75</td>
<td>244</td>
<td>48-56</td>
</tr>
<tr>
<td></td>
<td>64-66</td>
<td>136</td>
<td>132-134</td>
<td>220</td>
<td>190-192</td>
<td>630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66-68</td>
<td>134</td>
<td>150-160</td>
<td>434</td>
<td>192-194</td>
<td>414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66-64</td>
<td>214</td>
<td>160-170</td>
<td>609</td>
<td>194-196</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64-72</td>
<td>244</td>
<td>170-180</td>
<td>730</td>
<td>196-198</td>
<td>538</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>227</td>
<td>198-200</td>
<td></td>
<td></td>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-88</td>
<td>256</td>
<td>180-190</td>
<td>518</td>
<td>0-100</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-96</td>
<td>298</td>
<td>190-200</td>
<td>630</td>
<td>100-200</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96-104</td>
<td>268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104-112</td>
<td>342</td>
<td>0-20</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>112-120</td>
<td>443</td>
<td>20-40</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120-128</td>
<td>383</td>
<td>40-60</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>128-136</td>
<td>408</td>
<td>60-80</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>136-144</td>
<td>458</td>
<td>80-100</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144-152</td>
<td>445</td>
<td>100-120</td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>152-160</td>
<td>434</td>
<td>120-140</td>
<td>431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160-168</td>
<td>609</td>
<td>140-160</td>
<td>469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168-176</td>
<td>483</td>
<td>160-180</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>176-184</td>
<td>730</td>
<td>180-200</td>
<td>680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>184-192</td>
<td>630</td>
<td>0-25</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192-200</td>
<td>584</td>
<td>25-50</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-10</td>
<td>13</td>
<td>50-75</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-20</td>
<td>41</td>
<td>75-100</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-30</td>
<td>82</td>
<td>100-125</td>
<td>383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-40</td>
<td>96</td>
<td>125-150</td>
<td>462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-50</td>
<td>143</td>
<td>150-175</td>
<td>609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>214</td>
<td>175-200</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-70</td>
<td>166</td>
<td>0-40</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>244</td>
<td>40-80</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-90</td>
<td>266</td>
<td>80-120</td>
<td>443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-100</td>
<td>286</td>
<td>120-160</td>
<td>469</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100-110</td>
<td>342</td>
<td>160-200</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110-120</td>
<td>443</td>
<td>0-50</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120-130</td>
<td>383</td>
<td>50-100</td>
<td>298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130-140</td>
<td>408</td>
<td>100-150</td>
<td>462</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140-150</td>
<td>458</td>
<td>150-200</td>
<td>730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peer Reviewed Journal Vol II Issues VI Impact Factor 0.948
Table 4 (h)

9. REFERENCE